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Bayesian inference delivers principled rules for learning from data and

integrating out uncertainty. However, standard Bayesian inference can be

meaningfully interpreted only when the data generating mechanism is

within the family of models defined by prior and likelihood. The growing

complexity of data problems, has motivated intuitive generalisations of the

Bayesian paradigm for dealing with situations when such an assumption

does not necessarily hold. More notable strategies include:

(i) likelihood tempering and coarsened posteriors;

(ii) the Rule of Three;

(iii) Posterior Bootstrapping

Common conjectures in deriving such strategies are that:

- either the likelihood or the prior only are mis-specified and the full joint

likelihood is mis-specified with a single parameter: P(𝜃|𝑦) ∝
𝑃 𝜃 𝑃 𝑦 𝜃 𝜖

- the Kullback-Leibler divergence is an appropriate measure of

discrepancy between the modelling and observed densities

- assuming correctly specified model facilitates optimal inference

In this work, we study a generic framework for doing inference in mixture

models, under the assumption that the different random variables in the

graphical model are mis-specified and only specified within a maximum

mean discrepancy 𝑟 -neighbourhood of the observed realizations. We

demonstrate some examples where incorporating an assumption that

component distributions are mis-specified leads to more efficient inference

and better maximum-a-posteriori clustering. Finally, we propose a mixture

modelling framework which uses ‘pseudo-points’ to define the density of

each component, rather then exponential family parametric models.

Conclusion 

Figure 1: Plot of single-cell ATAC-seq data used visualised using PCA (left

column), TSNE (middle column), and UMAP (right column). Data is

coloured according to cell-specific sequencing (1st row). Data is coloured by

clusters inferred from mixtures of MMD defined pseudo-points marginal (2nd

row), negative-binomial mixture model (3rd row), and K-means (4th row).

We demonstrate a clustering application on assay for transposase-

accessible chromatin using sequencing (ATAC-seq) data from 10X

Genomes [1] internal single-cell demonstration data set of peripheral blood

mononuclear cells (PBMCs) from a healthy donor with N = 482 cells and D

= 26, 216 peaks. To avoid cluttering the sequencing depth we adopt a

cosine kernel measures to define the mixtures of MMD defined pseudo-

points marginal.

The maximum mean discrepancy (MMD) can be used to find the statistical

distance between two distributions by comparing the family of summary

statistics between the two. Let 𝑃 and 𝑄 be two Borel probability measures

on some topological space 𝒴, then the MMD between the two is:

MMDℋ 𝑃, 𝑄 = 𝜇𝑃 − 𝜇𝑄 ℋ

where 𝜇𝑃 and 𝜇𝑄 are the ‘mean embeddings’ of the respective

distributions in the reproducing kernel Hilbert space (RKHS) ℋ . One

advantage of the MMD is that it can be approximated :
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Mixtures of MMD defined pseudo-point marginals
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[1] https://support.10xgenomics.com/single-cell-atac/datasets/1.2.0/atacpbmc500nextgem/

P 𝑐𝑛 = 𝑘|… ∝ P 𝑐𝑛 = 𝑘 × P 𝑦𝑛|𝜇𝑘, Σ𝑘
In the proposed MMD mixture model approach, this is:

Where 𝑘 ∙,∙ is a ‘kernel function’ in the RKHS, a common choice

is the Gaussian kernel: 𝑘 𝑦𝑖 , 𝑦𝑗 = exp −
𝑦𝑖−𝑦𝑗 2
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Our inference can iterate between updating the assignment probabilities

given the robust component density terms and the mixing parameters and

updating the component parameters or ‘pseudo-points’.

If we denote the component assignments with 𝑐𝑛 ∈ 1,… , 𝐾 , the assignment

probabilities are updated using:

P 𝑐𝑛 = 𝑘|𝝆, 𝒖 =
P 𝑐𝑛 = 𝑘 × 𝜌 MMDℋ 𝛿𝑦𝑛 , 𝑃𝒖
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σ𝒌P 𝑐𝑛 = 𝑘 × 𝜌 MMDℋ 𝛿𝑦𝑛 , 𝑃𝒖
𝑘
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if we are not assuming a relaxation on the mixing probabilities 𝑃 𝑐𝑛 = 𝑘 .

• A simple framework for making explicit robustness assumptions on the 

different parameters of mixture models. 

• Flexible and interpretable component densities can be captured using 

only component ‘pseudo-points’ 

• With appropriate RKHS we can incorporate different invariance 

properties during inference.

• Main uses: (i) robust inference when our model is                                                   

mis-specified; (ii) scalable inference even in when our model is well  

specified.

Defining flexible components using appropriate reproducing kernel Hilbert

space

(a) Data (b) Clustering form Gaussian  
MM (81%)

(c) Clustering from mixtures of 
MMD defined pseudo-point 
marginal (100%)

(a) Data (b) Density estimated by 
Gaussian 

(c) Density estimated by MMD 
defined  pseudo-point marginal 

Define component likelihood using MMD between the distribution

defined by the component ‘pseudo-points’

(a) Data (b) Clustering form Gaussian  
MM (50%)

(c) Clustering from mixtures of 
MMD defined pseudo-point 
marginal (100%)

Maximum mean discrepancy 

Robust MMD mixtures: Assume the augmented

complete data likelihood:
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Assume each component 𝑘 is parametrized by 𝑀 pseudo-points 𝑢1,…,𝑀
𝑘

and the assignment probabilities depends on the distributional

distance: MMDℋ 𝑃𝒚, 𝑃𝒖
2
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In the proposed mixture density framework, the modeller has two make two

distinctive assumptions: (i) one for the expected component density/basis
𝜌 ⋅ and (ii) one for the most appropriate RKHS ℋ to incorporate parameter

invariance.
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