Digitalizing beauty: On NFT art and its price

Min-Bin Lin¹, Vanessa Emanuela Guarino²-³, Cathy Yi-Hsuan Chen⁴

¹School of Business and Economics, Humboldt University of Berlin
²Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin
³Kainmueller Lab, Max Delbrück Center for Molecular Medicine
⁴Adam Smith Business School, University of Glasgow

Contact email: min-bin.lin@hu-berlin.de

Motivation

- **NFT art market**
 - Market cap US$ 41 billion in 2021: 30 %
 - Sales of contemporary art market: 22%
 - Some stylized facts of contemporary art trading
 - Inherent trading
 - Price inequality
 - Centralized patrons
 - Less transparency in pricing

Statistical Regularities

- **Color quantification (K means)**

Figure 1. Log price box plot for top 10 collections

Figure 2. ArtBlocks sales and prices

Figure 3. Color palette for ArtBlocks #17225316

Figure 4. Dominant colors from 3,964 artworks

- **Luminance**: Perceived brightness to RGB colour
 i.e. saturation-brightness
 - HSB = 0.2939^2 + 0.587G^2 + 0.114R^2
- **Composition-level statistics**
- **Pairwise spatial statistics**
 - For a set of images \(\{x_i\}\)
 - \(\text{Skew} = \left(\frac{\theta_3}{\theta_2} \right)^{\frac{1}{2}}\)
 - \(\text{Kurt} = \left(\frac{\theta_4}{\theta_2} \right)^{\frac{1}{2}}\)
 - \(\text{Energy Spectral Density (ESD)}\)

Figure 5. Image statistics vs. Prices

Figure 6. Process pipeline

Preliminary Result

- **Spatial Energy Spectrum**

Figure 7. Some stylized facts of contemporary art trading in 2021:

- 30 %
- Sparseness (Kurtosis)
- Asymmetry (Skewness)
- Composition-level statistics
- Energy of signal
 - Perceived brightness to RGB colour
- Illiquidity
- Price inequality

NEURAL NETWORK

- **Interpretability**
 - Learned Features: What features has the NN learned?
 - Concepts: Which abstract concepts has the NN learned?
 - Adversarial Learning
 - Influential Instances
- **Integrated gradient**
 - Sundararajan, Taly & Yan (2017)
 - Input-output pairs \(\{x_i, f(x_i)\}_{i=1}^n \in \mathbb{R}^d \times [0,1]\)
 - Network classifier \(f: \mathbb{R}^d \to [0,1]\)
 - Basis functions \(\{\phi_i(x)\}_{i=1}^m \in \mathbb{R}^m\)

Figure 8. Attribution \(a_i(x, x')\) is contributions of \(x_i\) to \(f(x)\) relatively to baseline input \(x'\)

IG Axioms - I

1. Sensitivity \(\forall x_i \neq x'_i \exists \delta \phi_i(x) \neq \delta \phi_i(x') : f(x_i) \neq f(x'_i) \land a_i(x_i, x'_i) = a_i(x'_i, x'_i)\)
 - Relu \(f(x) = 1 - \max(0,1-x)\)
 - Suppose \(x' = 0, x = 2, a_i(x, x') = \delta \phi_i\)

2. Implementation Invariance \(\forall f, g \in \mathcal{F} : f(x) = g(x) \land a_i(x, x') = a_j(x, x')\)
 - \(\mathcal{G}(x) = \frac{\partial}{\partial x} g(x - x')\)
 - satisfies 1. and 2. where \(a \in [0,1]\) allows the linear interpolation between baseline and original image

IG Axioms - II

Proposition \(f: \mathbb{R}^d \to [0,1]\) is differentiable almost everywhere \>
\(\sum_i \mathcal{G}(x) = f(x) - f(x')\)

Generalization - Path Methods (PM)

Let \(\gamma = (\gamma_1, \ldots, \gamma_n) \to \mathbb{R}^d\) be a smooth function specifying a path in \(\mathbb{R}^d\) from \(x'\) to \(x\) and \(\alpha \in [0,1]\), then \(PM(f(x) = \frac{\partial}{\partial \alpha} g(x)\frac{\partial g(x)}{\partial \alpha})dx\)

Future work

- Process pipeline

Reference